2016考研数学:函数极限解题技巧讲解

考研数学最难的题型是什么?我们为同学们带来了,2016考研数学:函数极限解题技巧讲解知识点整理。希望你在学习的时候,好好利用我们带来的赏析。
 
对数法
 
此法适用于指数函数的极限形式,指数越是复杂的函数,越能体现对数法在求极限中的简便性,计算到最后要注意代回以e为底,不能功亏一篑。
 
定积分法
 
此法适用于待求极限的函数为或者可转化为无穷项的和与一个分数单位之积,且这无穷项为等差数列,公差即为那个分数单位。
 
泰勒展开法
 
待求极限函数为分式,且用其他方法都不容易简化时使用此法会有意外收获。当然这要求考生能熟记一些常见初等函数的泰勒展开式且能快速判断题目是否适合用泰勒展开法,坚持平时多记多练,这都不是难事。
 
等价替换法
 
此法能快速简化待求极限函数的形式,也需要考生熟记一些常用的等价关系,才能保证考试时快速准确地解题。注意等价替换只能替换乘除关系的式子,加减关系的不可替换。
 
放缩法(夹逼定理)
 
此法较简单,就是对待求极限的函数进行一定的扩大和缩小,使扩大和缩小后的函数极限是易求的,例如《2013考研数学接力题典1800》第4页的56题:求极限,该题即是用放缩法求解,具体解法可参见书内答案。
 
重要极限法
 
高数中的两个重要极限:及其变形要熟记并学会应用。
 
掌握了以上八大方法还是不够的,要学会融会贯通,因为考研题的综合性很强,不是一道题只用一种方法就能够解出来的,往往是同时用到两三种甚至更多才能顺利解答。这就需要考生平时多想多练,做到熟能生巧,才能在最后的考试决战中胜人一筹。

X

扫码添加获取各院校复试名单及录取名单

【版权与免责声明】本站所提供的内容除非来源注明研线网,否则内容均为网络转载及整理,并不代表本站赞同其观点和对其真实性负责。文章由本站编辑整理发出,仅供个人交流学习使用。如本站稿件涉及版权等问题,请联系本站管理员予以更改或删除。

责任编辑:superadmin