考研数学:导数中的计算及应用

与导数相关的知识点可谓是每年考研题中必不可少的一道“菜”,无论是选择题还是填空,或者解答题。所以将导数的相关知识点学习清楚,复习明白是我们要做的首要任务。

导数的计算中要先掌握四则运算,反函数和复合函数的求导运算。有了这些就可以将导数的大部分计算题搞定,除此之外,还需要掌握几个特殊函数的导数计算:幂指函数,隐函数,参数方程,抽象函数,我们一一介绍。

幂指函数:什么是幂指函数?一般的,将形如y=f(x)g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。简单的说就是

隐函数:设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

其中二阶导数不需要记公式,只需要掌握二阶求导过程,做题目时直接计算就可以了。

抽象函数:把没有给出具体解析式的函数称为抽象函数。抽象函数的求导跟隐函数求导类似,直接求导,把因变量看成自变量的函数,求导即为y' 。

以上就是导数计算中几种特殊函数导数计算,在考研中会跟其他知识点和章节结合出题,结合最多的就是导数应用,如何结合,怎么处理,佟老师下次继续为大家讲解。

X

扫码添加获取各院校复试名单及录取名单

【版权与免责声明】本站所提供的内容除非来源注明研线网,否则内容均为网络转载及整理,并不代表本站赞同其观点和对其真实性负责。文章由本站编辑整理发出,仅供个人交流学习使用。如本站稿件涉及版权等问题,请联系本站管理员予以更改或删除。

责任编辑:superadmin