2016考研数学:你不知道的“极值”

  关于“极值”,大家或许感觉对它的了解是足够的,随口就可以说出:极值是局部的最值。事实上,它还有很多你没有注意到的细节,或许你只是“雾里看花,水中望月”而已,下面,为大家梳理极值的相关知识,了解你不知道的极值。

  1、极值的定义

  从定义可以看出,一个点想要称为是极值点,唯一的要求就是此点处的函数值比它左邻域及右邻域内的函数值都要大(极大值)或者都要小(极小值),至于此点处函数的性态,比如连续性、可导性,并未做要求。换句话说,一个点是极值点,那么这个点可能是连续点,也可能是间断点,还可能是不可导点。另外,作为一个极值点,要求它的左右两侧邻域内都有定义,所以,极值点是不可能取在区间端点处的,这是和最值点的一个重要区别。

  2、极值的必要条件

  一句话,第一充分条件告诉我们,可疑的极值点中哪些才是真正的极值点?就是那些一阶导函数在左右邻域变号的才是。这一点想必大家都清楚,但是既然是充分条件,那么说明,一阶导函数在左右邻域变号的是极值点,但是极值点的左右邻域内一阶导函数未必变号,大家是否注意到了呢?你能举出反例吗?

  第二充分条件与第一充分条件相比,优势在于操作简便,缺点在于只能判别驻点是否为极值,不可导点处是否为极值是判定不出的。另外,第二充分条件要求大家都会证明,顺便复习了极限的局部保号性。

  通过这篇文章希望同学们能体会,在第一遍基础学习的时候我们一定要把知识学细,学透,不留任何疑问,这样厚实的基础,一定会在二阶方法的学习时形成强大的后劲!

X

扫码添加获取各院校复试名单及录取名单

【版权与免责声明】本站所提供的内容除非来源注明研线网,否则内容均为网络转载及整理,并不代表本站赞同其观点和对其真实性负责。文章由本站编辑整理发出,仅供个人交流学习使用。如本站稿件涉及版权等问题,请联系本站管理员予以更改或删除。

责任编辑:superadmin