2021考研大纲:武汉工程大学107光电信息与能源工程学院、数理学院2021年研究生考试大纲

众所周知,考研大纲是全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书,规定了全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。今天,为了方便考研的小伙伴们,小编为大家整理了“2021考研大纲:武汉工程大学107光电信息与能源工程学院、数理学院2021年研究生考试大纲”的相关内容,希望对大家有所帮助!

武汉工程大学2021年硕士研究生入学考试

《数学分析》考试大纲

一、考试标准(命题原则):

1、考查学生对基础知识(包括基本概念、基本内容、基本结论、基本计算)的掌握程度以及运用已掌握的知识分析和解决问题的能力,考查学生的抽象思维能力和逻辑推理能力。

2、考试对象为报考我校2020年光电、数理学院计算机应用技术(理学)专业各方向的研究生入学考试考生。

3、试题难中易比例:容易:30%,中等:55%,难15%。

4、知识点复盖率达80%以上。

二、题型、分值及考试时间:

1、填空(约30分)

2、选择题(约20分)

3、判断题(约10分)

2、计算题(约60分)

3、证明题(约30分)

合计150分

考试时间:180分钟(3个小时)

三、考试内容与要求(有*号的章节仅需了解基本概念与基本计算)

1、 函数

函数概念;函数的四则运算;函数的图象;数列;有界函数;单调函数;奇函数与偶函数;周期函数;复合函数;反函数;初等函数

重点掌握:函数的概念,函数的表示,函数的复合运算和具有特殊性质的函数。

2、极限

数列极限;两个重要极限;收敛数列的性质;收敛数列的四则运算;数列的收敛判别法;子数列;函数的极限;函数极限的性质;函数极限与数列极限的关系;函数极限存在判别法;无穷大与无穷小;无穷小的比较。

重点掌握:数列极限的定义与性质,收敛判别的单调有界原理,函数极限的定义与性质,两个重要极限,无穷大与无穷小的定义与性质。

3、连续函数

连续函数的概念;间断点及其分类;连续函数的运算及其性质;闭区间连续函数的性质;反函数的连续性;初等函数的连续性。

重点掌握:函数连续的定义,闭区间连续函数的性质。

4、实数的连续性(*)

闭区间套定理;确界定理;有限覆盖定理;聚点定理;致密性定理;柯西收敛准则;闭区间上连续函数性质与证明;一致连续性。

重点掌握:上、下确界的定义,一致连续的概念,闭区间连续函数的性质的证明。

5、 导数与微分

导数概念;导数的四则运算;反函数的求导法则;复合函数的求导法则;初等函数的导数;隐函数求导法则;参数方程求导法则;微分的概念;微分的运算法则和公式;微分在近似计算上的应用;高阶导数;莱布尼茨公式;高阶微分。

重点掌握:导数与微分的定义,运算及应用,高阶导数与高阶微分的计算。

6、 微分学的基本定理及其应用

罗尔定理;拉格朗日定理;柯西定理;洛必达法则;泰勒公式;常用的几个展开式;函数的单调性;函数的极值与最值;函数的凸凹性;曲线的渐近线。

重点掌握:微分中值定理,洛必达法则,泰勒公式,利用导数研究函数性质。

7、 不定积分

原函数;不定积分;分部积分法;换元积分法;有理函数的不定积分;简单无理函数的不定积分;三角函数的不定积分。

重点掌握:不定积分的定义及性质,不定积分的计算。

8、 定积分

定积分的概念;小和与大和;可积准则;三类可积函数;定积分的性质;定积分中值定理;按照定义计算定积分;积分上限函数;定积分的基本公式;定积分的分部积分法;定积分的换元积分法;微元法;平面区域的面积;平面曲线的弧长;应用截面面积求体积;旋转体的侧面积;变力作功;定积分的近似计算。

重点掌握:定积分的定义,存在条件及性质,定积分的计算及应用。

9、 级数

数值级数收敛与发散的概念;收敛级数的性质;同号级数;变号级数;绝对收敛级数的性质;函数级数的收敛域;一致收敛的概念;一致收敛判别法;函数列的一致收敛;和函数的分析性质;幂级数的收敛域;幂级数和函数的分析性质;泰勒级数;基本初等函数的幂级数展开;幂级数的应用。

重点掌握:收敛与发散的概念,收敛级数的性质,同号级数、变号级数收敛性判别法,函数项级数、一致收敛、一致收敛级数的性质,幂级数的概念,收敛半径,和函数的分析性质,函数的幂级数展开。

10、多元函数微分学

多元函数的概念;二元函数的极限;二元函数的连续性;偏导数;全微分;可微的几何意义;复合函数微分法;方向导数;高阶偏导数;二元函数的泰勒公式;二元函数的极值。

重点掌握:多元函数的概念,二元函数的极限和连续概念与性质,偏导数、全微分,复合函数偏导数的链式法则,微分运算法则,极值的概念与计算。

11、 隐函数

隐函数的概念;一个方程确定的隐函数;方程组确定的隐函数;函数行列式;函数行列式的性质;函数行列式的几何性质;条件极值与拉格朗日乘数法;空间曲线的切线与法平面;曲面的切平面与法线

重点掌握:隐函数存在定理,函数行列式的性质,条件极值的概念与计算,曲线的切线与法平面和曲面的切平面与法线方程。

12、反常积分与含参变量的积分(*)

无穷积分收敛与发散的概念;无穷积分与级数;无穷积分的性质;无穷积分的敛散性判别法;瑕积分收敛与发散的概念;瑕积分的敛散性判别法;含参变量的有限积分;含参变量的无穷积分;函数与函数。

重点掌握:无穷积分收敛与发散的概念及敛散性判别法,瑕积分收敛与发散的概念及敛散性判别法,含参变量的有限积分的概念与分析性质,含参变量的无穷积分的概念,一致收敛的定义与判别法,含参变量无穷积分的分析性质,函数与函数。

13、重积分

二重积分的概念;二重积分的性质;二重积分的计算;二重积分的换元;曲面的面积;三重积分的概念;三重积分的计算;三重积分的换元;简单应用。

重点掌握:重积分的概念与性质,二重积分及二重积分、三重积分的计算及柱面坐标与球面坐标。

14、曲线积分与曲面积分(*))

第一型曲线积分;第二型曲线积分;第一型曲线积分与第二型曲线积分的关系;格林公式;曲线积分与路线无关的条件;第一型曲面积分;第二型曲面积分;奥高公式;斯托克斯公式;梯度;散度;旋度;微分算子。

重点掌握:第一型曲线积分与曲面积分的定义及计算,第二型曲线积分与曲面积分的定义及计算,格林公式,曲线积分与路线无关的条件,奥高公式,斯托克斯公式。

四、 主要参考书:

1. 刘玉琏,傅沛仁 等.数学分析讲义(第五版)(上、下册).高等教育出版社,2010年

2. 裴礼文.数学分析中的典型问题与方法.高等教育出版社,2009年

3  复旦大学数学系编.数学分析(第三版)(上、下册).高等教育出版社,2008年

以上为武汉工程大学107光电信息与能源工程学院、数理学院部分考试大纲内容,详细内容请下载附件查看或者到院校官网查询!

点击查看:107光电信息与能源工程学院、数理学院


原文标题:武汉工程大学2021年硕士研究生入学考试自命题考试大纲

原文链接:
https://yjs.wit.edu.cn/info/1160/3674.htm

以上就是小编整理“2021考研大纲:武汉工程大学107光电信息与能源工程学院、数理学院2021年研究生考试大纲的全部内容,更多考研大纲信息,请持续关注!

X

扫码添加获取各院校复试名单及录取名单

【版权与免责声明】本站所提供的内容除非来源注明研线网,否则内容均为网络转载及整理,并不代表本站赞同其观点和对其真实性负责。文章由本站编辑整理发出,仅供个人交流学习使用。如本站稿件涉及版权等问题,请联系本站管理员予以更改或删除。

责任编辑:金鸽