2021考研大纲:海南师范大学数学与统计学院实变函数2021年硕士研究生招生考试大纲

众所周知,考研大纲是全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书,规定了全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等政策指导性考研用书。今天,为了方便考研的小伙伴们,小编为大家整理了“2021考研大纲:海南师范大学数学与统计学院实变函数2021年硕士研究生招生考试大纲”的相关内容,希望对大家有所帮助!


海南师范大学全国硕士研究生招生自命题考试大纲
 
考试科目代码:[]              考试科目名称:实变函数
 
一、考试形式与试卷结构
 
(一)试卷成绩及考试时间
 
本试卷满分为100分,考试时间为120分钟。
 
(二)答题方式
 
答题方式为闭卷、笔试。
 
(三)试卷结构
 
名词解释题;简答题;计算题;证明题等
 
二、考试目标:
 
1.掌握实变函数的基本概念和基础知识。
 
2.理解实变函数的基本理论和基本方法。
 
3.运用实变函数的基本理论和方法来证明和解决相关问题。
 
三、考试范围:
 
第一章 集合
 
集合的描述与表示,子集,集合的相等;集合的并、交、差、补运算及其性质,德·摩根公式:上限集、下限集及其性质。映射、单射、满射、双射,逆映射及其性质;对等及其性质;基数与基数的比较,伯恩斯坦定理。可数集的定义及等价条件,可列集及其性质,可数集的判断证明。不可数集的存在性, 连续基数及其性质,连续基数的判断证明,基数无最大者。
 
第二章  点集
 
度量空间概念、邻域及其性质、收敛点列、点集的距离与直径、区间概念。内点,外点,边界点,聚点及孤立点,聚点及其等价条件,边界,内核、导集与闭包概念及其简单性质。Bolzano-Weierstrass定理,开集与闭集的及其运算性质,海涅-波雷尔有限覆盖定理,紧集、自密集与完备集。直线上开集、闭集、完备集的构造。平面上开集的构造,康托(Cantor)集的构造与性质。
 
第三章、测度论
 
教学内容: 外测度及其性质,可测集的定义,可测集的运算性质,单调可测集列极限的测度。区间、开集、闭集皆可测、G6型集,F型集,可测集同开集、闭集、 G6 型集、F型集之间的关系。
 
第四章、可测函数
 
点集上的函数:广义实数系 R=R∪(±∞)的运算。可测函数的定义及等价条件,连续函数与简单函数皆可测,可测函数关于代数运算和极限运算的封闭性,可测函数同简单函数列的关系,“几乎处处”的概念。可测函数列的收敛性, 叶果洛夫定理。鲁金定理(两种形式),依测度收敛,依测度收敛与几乎处处收敛互不包含的例子,勒贝格定理,黎斯定理,依测度收敛极限的唯一性。
 
第五章、勒贝格积分
 
测度有限集合上有界函数的勒贝格大和与小和,上积分与下积分,有界勒贝格可积函数,有界可积的充要条件是有界可测,有界勒贝格可积函数的运算性质,勒贝格积分与黎曼积分的关系。有界函数积分的积分区域与被积函数的有限可加性,积分的线性性质。积分的单调性与绝对可积性,非负函数积分存在与可积的定义,一般函数积分存在与可积定义,勒贝格积分的性质。勒贝格控制收敛定理,列维渐升函数列积分定理,勒贝格逐项积分定理,可积函数积分区域可列可加性,法都引理,广义黎曼可积与勒贝格可积的关系。直积、截面的概念及性质,勒贝格积分的几何意义,富比尼定理。
 
四、主要参考书目
 
1、《实变函数与泛函分析基础》(第三四版)程其襄 张奠宙 魏国强 胡善文 王漱石 编,高等教育出版社 2019年6月 第4版
 
2、《实变函数论》(第二版)江泽坚 吴智泉编  高等教育出版社 1994年6月第2版;
 
原文标题:海南师范大学2021年全日制硕士研究生招生简章

原文链接:http://yjsc.hainnu.edu.cn/html/2020/gongzuoxinxi_0909/9032.html


以上就是“2021考研大纲:海南师范大学数学与统计学院实变函数2021年硕士研究生招生考试大纲”的全部内容,更多考研大纲信息,请多多关注!

X

扫码添加获取各院校复试名单及录取名单

【版权与免责声明】本站所提供的内容除非来源注明研线网,否则内容均为网络转载及整理,并不代表本站赞同其观点和对其真实性负责。文章由本站编辑整理发出,仅供个人交流学习使用。如本站稿件涉及版权等问题,请联系本站管理员予以更改或删除。

责任编辑:dwj